Abstract
Variable line-spacing gratings are widely used in spacial spectroscopic and synchrotron radiation devices, but their design and fabrication are difficult. In this paper, the geometrical theory of aspheric wave-front recording optics is briefly reviewed. The genetic algorithm is introduced to optimize parameters of holographic variable line-spacing gratings. In order to improve the efficiency of calculation. the integral expression of the objective function is also derived. Design example of holographic variable line-spacing gratings for position sensor is given to demonstrate the capability of this method. Holographic variable line-spacing gratings with large density gradient are fabricated successfully.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.