Abstract

The mechanical properties of 3D-printed continuous plant fibre-reinforced poly(lactic) acid (PLA) composites are insufficient due to the low fibre volume fraction (∼30 %). Further increase of fibre volume fraction of composites by reducing the line width may result in a composite with low fibre impregnation degree or the clogging of printer nozzle because of the twisted nature and uneven diameter of plant yarns, which also degrades the mechanical properties. This study proposed a method to obtain 3D printed continuous flax fibre reinforced composites (CFFRCs) with a high fibre volume fraction and excellent mechanical performance by statistical analysis of the dimensions of flax fibre yarns as well as surface modification. The CFFRCs were printed by a fibre prepreg-based 3D printing method, and an in-situ impregnation method was also used to prepare CFFRCs for comparison. The results showed that the CFFRCs by the fibre prepreg method had a fibre volume fraction of 44.1 % and a void content of ∼1.9 % due to the high impregnation degree. Correspondingly, the tensile modulus and strength of the CFFRCs were the highest among the existing reported values of the composites made by 3D printing and even greater than those of the CFFRCs with a fibre volume fraction of ∼51.4 % prepared by the in-situ impregnation method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call