Abstract

Tissue engineering has gained prominence during the past decade since it offers a key solution to defects associated with the tissue regeneration. The limited healing potential of the cartilage tissue damage has significant clinical implications. Herein, dysprosium (Dy3+) impregnated polyvinyl alcohol (PVA) hydrogels have been developed to enhance the therapeutic efficacy, enabling simultaneous diagnostic imaging and antibacterial drug delivery for potential applications in articular cartilage. Based on the favorable imaging features, Dy3+ impregnated PVA hydrogels with enhanced stability were formed through successive steps of repeated cycles of freezing at – 30 °C for 21 h, thawing at 25 °C for 4 h and lyophilization. The tensile and compression tests of the hydrogels respectively determined a maximum of 3.88 and 1.58 MPa, which reflected better compatibility towards cartilage. The hydrogels fetched a sustained drug release for a period of 12 h with an associated swelling ratio of 80%. The potential of the resultant hydrogels in image diagnosis has been deliberated through their blue and yellow emissions in the visible region. Further, the computed tomography (CT) and magnetic resonance imaging characteristics of the hydrogels respectively accomplished a maximum of 343 Hounsfiled units (HU) and relaxivity of 7.25 mM−1s−1. The cytocompatibility of the hydrogels is also determined through in vitro tests performed in Murine pro B cell line (BA/F3) and human Megakaryocyte cell line (Mo7e) cell lines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.