Abstract
Diffractive optical elements (DOEs) are key components in the miniaturization of optical systems because of their planarity and extreme thinness. We demonstrate the fabrication of DOEs by use of gray-scale photolithography with a high-energy-beam sensitive glass photomask. We obtained DOE lenses with continuous phase profiles as small as 800 microm in diameter and 5.9 microm in the outermost grating pitch by selecting a suitable optical density for each height level and optimizing the process variables. Microlenses patterned with eight levels and replicated by UV embossing with the polymer master mold showed a diffraction efficiency of 81.5%, which was sufficiently high for the devices to be used as optical pickups. The effects of deviations in diffraction efficiency between the DOE height and profile design were analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.