Abstract

A novel core-shell cobalt and nickel based metal organic framework (MOF) nano-composites in the presence of the magnetic and non-magnetic walnut based activated carbon (AC) were subsequently employed for the adsorption of methylene blue (MB) in the batch system which were synthesized by an efficient and a facile preparation method. The nano-composites were characterized by applying general tests including XRD, FTIR, FESEM, EDX, TEM, VSM, TGA and BET. The findings indicated that the nanoparticle size of the well dispersed magnetic nano-composites was less than 20 nm. The core-shell structure of magnetic nanocomposites was detected from TEM images. The analytical achievements also demonstrated that the thermal resistance of the magnetic composites was higher than that of other samples. The maximum adsorption capacities were calculated to be 128 and 112.32 mg/g for the cobalt based MOF supported on the non-magnetic and magnetic ACs, respectively which was higher compared with the nickel based composites. Langmuir isotherm and a pseudo second order kinetic equation were fit models to describe the equilibrium adsorption and the kinetic behavior of MB on the adsorbents, respectively. The usability of the prepared samples was also studied for six cycles which showed the acceptable performance of the magnetic adsorbents for the real applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.