Abstract

Three-dimensional printing is a solid freeform fabrication process, which creates parts directly from a computer model. The parts are built by repetitively spreading a layer of powder and selectively joining the powder in the layer by ink-jet printing of a binder material. 3D printing was applied to the fabrication of sub-millimeter surface textures with overhang and undercut geometries for use in orthopedic prostheses as bony ingrowth structures. 3D printing is used to fabricate ceramic molds of alumina powder and silica binder, and these molds are used to cast the bony ingrowth surfaces of Co-Cr (ASTM F75) alloy. Minimum positive feature sizes of the ceramic mold and, therefore, minimum negative feature sizes of castings were determined to be approximately 200 x 200 x 175 microm and were limited by the strength of ceramic needed to withstand handling. Minimum negative feature sizes in the ceramic mold and, therefore, minimum positive features in the casting were found to be approximately 350 x 350 x 175 microm and were determined by limitations on removal of powder from the ceramic and the pressure required to fill these small features with molten metal during casting. Textures were designed with 5 layers of distinct geometric definition, allowing for the design of overhung geometry with overall porosity ranging from 30-70%. Features as small as 350 x 350 x 200 microm were included in these designs and successfully cast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.