Abstract

The development potential for oocytes can be predicted by their mechanical properties. One important parameter that is measured to calculate oocyte hardness is Cortical Tension (CT). In this work, for the first time, we present the design, simulation, and fabrication of a new aspiration microfluidic chip to measure the CT of oocytes and then predict their maturation capability in the Germinal Vesicle (GV) stage. This high-performance technique facilitates oocyte characterization and is a promising alternative to traditional methods such as MicroPipette Aspiration (MPA). The proposed technique involves considerably simpler operation, less specialized equipment, and less technical skill than MPA. The proposed microfluidic channel also promises faster measurements. It is shown that in order to completely continue the growth process of oocytes in GV stage, the CT should be in a certain range: very low or very high CTs lead to unsuccessful growth. The obtained results show that 79% of oocytes with the CT between 1.5 and 3 nN/μm reach the Metaphase II (MII) stage, whereas the growth for 78% of oocytes with the CT less than 1.5 nN/μm or higher than 3 nN/μm stops at the GV or Germinal Vesicle Break Down (GVBD) stages. Another property, kvis, that points to the viscous behavior of oocytes is also measured. It is seen that 80% of GV oocytes with the kvis values between 15 and 30 k Pa s/m reach the MII stage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call