Abstract

A microfluidic valve based on electrochemical (ECM) actuation was designed, fabricated using UV-LIGA microfabrication technologies. The valve consists of an ECM actuator, polydimethylsiloxane (PDMS) membrane and a micro chamber. The flow channels and chamber are made of cured SU-8 polymer. The hydrogen gas bubbles were generated in the valve microchamber with Pt black electrodes (coated with platinum nanoparticles) and filled with 1 M of NaCl solution. The nano particles coated on the working electrode helps to boost the surface-to-volume ratio of the electrode for faster reversible electrolysis and faster valve operation. To test the functionality of the microvalve, a simple micropump based on ECM principle was also integrated in the system to deliver a microscopic volume of fluid through the valve. The experimental results have showed that an approximately 300 μm deflection of valve membrane was achieved by applying a bias voltage of −1.5 V across the electrodes. The pressure in the valve chamber was estimated to be about 200 KPa. Experimental results proved that the valve can be easily operated by controlling the electrical signals supplied to the ECM actuators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call