Abstract

We report the design and fabrication of single-material distributed Bragg reflectors (DBRs) composed of amorphous germanium (a-Ge) thin films by a glancing angle deposition and their optical reflectance characteristics in the long wavelength region of 1.7–3.1 μm, together with the aid of theoretical analysis using a rigorous coupled-wave analysis method. The refractive index of the a-Ge films is estimated from the measured transmittance spectra. The high and low refractive indices a-Ge films (i.e., Δn∼2.18), which compose the alternative layers of DBRs, were fabricated at two incident vapor flux angles (θα) of 0° and 80°, respectively, by determining the quarter wavelength thicknesses of 135 nm at θα=0° and 291 nm at θα=80° for a center wavelength (λc) of ∼2.2 μm. For the fabricated a-Ge/a-Ge DBR with only 5 pairs, the normalized stop bandwidth (Δλ/λc) of ∼22.3% was measured while maintaining high reflectance values of >99% over a wide wavelength range of 2.06–2.55 μm, which indicates a reasonable consistency with the calculated reflectance results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call