Abstract

Love mode surface acoustic wave (SAW) transducers were designed and fabricated by depositing silicon dioxide on a ST-cut quartz crystal wafer using r.f. magnetron sputtering. Two different propagation directions have been investigated by aligning the SAW finger pattern along the x-axis propagation direction and the direction orthogonal to the x-axis of the ST-cut quartz crystal. The latter, in which the propagation mode is dominantly the Love mode, shows promising characteristics for use as a high frequency SAW transducer because of high acoustic wave propagation velocity and electromechanical coupling coefficient. Phase and group velocity, capacitance per unit length of electrodes, insertion loss and input admittance, of two transducers, with different alignments, have been measured and compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call