Abstract

A scanning micromirror suspended by a pair of V-shaped beams with vertical electrostatic comb drives was designed, modeled, fabricated and characterized. The dynamic analyses were carried out by both theory calculation and FEM simulation to obtain frequency response, stiffness characteristics, oscillation modes and their resonance frequencies. The device was fabricated using the silicon-on-insulator process by only two photolithography masks. Some problems during the process such as the micromirror distortion and the side sticking of the comb fingers were effectively solved by thermal annealing and alcohol-replacement methods, respectively. Based on the fabricated device, the typical scanning patterns for 1-D and 2-D operation were obtained. The experimental results reveal that the micromirror can work in resonant mode with the resonant frequency of 2.38 kHz. The maximum deflection angles can reach ±4.8°, corresponding to a total optical scanning range of 19.2° at a driving voltage of 21 V.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.