Abstract

Recently, the development of durable hydrophobic surfaces has received much attention, with anti-icing applications in harsh environments such as aircrafts, wind turbines, power lines, and marine vessels. In this paper we describe a design methodology employing a lattice Boltzmann method to determine the optimal geometry of microstructures to achieve superhydrophobicity. We describe a top-down fabrication method to form superhydrophobic micro-hierarchical metal surface using photolithography, nanoimprinting, and continuous metal-to-metal replication using pulse-reverse-current electrochemical deposition. The surfaces were formed of nickel, which has a large hardness and is resistant to corrosion, making it suitable for use in harsh external conditions. We compared the measured wettability of fabricated micro-hierarchical metal surface with that from numerical simulations. The contact angle and contact angle hysteresis of four metal surfaces were measured (i.e., a bare surface, a random nanostructured surface, an engineered nanostructured surface, and an engineered hierarchical structured surface), and the anti-icing properties of these four metal surfaces were investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.