Abstract

As the development of extreme-ultraviolet (EUV) lithography progresses, interest grows in the extension of traditional optical components to the EUV regime. The strong absorption of EUV by most materials and its extremely short wavelength, however, make it very difficult to implement many components that are commonplace in the longer wavelength regimes. One such component is the diffractive optical element used, for example, in illumination systems to efficiently generate modified pupil fills. The fabrication and characterization of an EUV binary phase-only computer-generated hologram is demonstrated, allowing arbitrary far-field diffraction patterns to be generated. Based on reflective architecture, the fabricated device is extremely efficient. Based on an identically fabricated null hologram, the absolute efficiency into one diffracted order of 22% has been demonstrated. In the case where axially symmetric diffraction patterns are desired (both positive and negative diffraction orders can be used), the efficiency can be twice as high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.