Abstract
A photo fuel cell (PFC) offers an attractive way to simultaneously convert solar and biomass energy into electricity. Photocatalytic biomass oxidation on a semiconductor photoanode combined with dark electrochemical reduction of oxygen molecules on a metal cathode (usually Pt) in separated compartments is the common configuration for a PFC. Herein, we report a membrane-free PFC based on a dual electrode, including a W-doped BiVO4 photoanode and polyterthiophene photocathode for solar-stimulated biomass-to-electricity conversion. Air- and water-soluble biomass derivatives can be directly used as reagents. The optimal device yields an open-circuit voltage (VOC ) of 0.62 V, a short-circuit current density (JSC ) of 775 μA cm-2 , and a maximum power density (Pmax ) of 82 μW cm-2 with glucose as the feedstock under tandem illumination, which outperforms dual-photoelectrode PFCs previously reported. Neither costly separating membranes nor Pt-based catalysts are required in the proposed PFC architecture. Our work may inspire rational device designs for cost-effective electricity generation from renewable resources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.