Abstract

Autogenous cell transplantation is one of the most promising new techniques being developed for bone generation as it eliminates problems of donor site scarcity, immune rejection and pathogen transfer. Osteoblasts obtained from an individual patient can be grown in culture and seeded onto a three-dimensional scaffold that will slowly degrade and resorb as the bone or cartilage structures grow and assimilate in vivo. The three-dimensional (3D) scaffold provides the necessary support for cells to maintain their differentiated state and defines the overall shape of the new bone and cartilage. The necessity of using a scaffold structure as the basic template of engineering tissues has encouraged the study the application of advanced manufacturing technologies in this field. For example, rapid prototyping (RP) technologies such as fused deposition modeling (FDM) can be used to fabricate complex 3D structures based on two- dimensional (2D) cross-sectional data obtained by slicing a computer-aided design (CAD) models. FDM is currently being applied in our laboratory to fabricate bioresorbable 3D scaffolds of various porosities and micro-architecture for tissue engineering bone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.