Abstract
Augmented reality near-eye display (AR-NED) technology has attracted enormous interests for its widespread potential applications. In this paper, two-dimensional (2D) holographic waveguide integrated simulation design and analysis, holographic optical elements (HOEs) exposure fabrication, prototype performance evaluation and imaging analysis are completed. In the system design, a 2D holographic waveguide AR-NED integrated with a miniature projection optical system is presented to achieve a larger 2D eye box expansion (EBE). A design method for controlling the luminance uniformity of 2D-EPE holographic waveguide by dividing the two thicknesses of HOEs is proposed, which is easy to fabricate. The optical principle and design method of the HOE-based 2D-EBE holographic waveguide are described in detail. In the system fabrication, laser exposure fabrication method of eliminating stray light for HOEs is proposed, and a prototype system is fabricated and demonstrated. The properties of the fabricated HOEs and the prototype are analyzed in detail. The experimental results verified that the 2D-EBE holographic waveguide has a diagonal field of view (FOV) of 45°, an ultra-thin thickness of 1 mm, and an eye box of 16 mm × 13 mm at an eye relief (ERF) of 18 mm, the MTF values of different FOVs at different 2D-EPE positions can be better than 0.2 at 20 lp/mm, and the whole luminance uniformity is 58%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.