Abstract

The wheel-legged robot combines the functions of wheeled vehicles and legged robots: high speed and high passability. However, the limited performance of existing joint actuators has always been the bottleneck in the actual applications of large wheel-legged robots. This paper proposed a highly integrated electro-hydrostatic actuator (EHA) to enable high-dynamic performance in giant wheel-legged robots (>200 kg). A prototype with a high force-to-weight ratio was developed by integrating a micropump, a miniature spring accumulator, and a micro-symmetrical cylinder. The prototype achieves a large output force of more than 9400 N and a high force-to-weight ratio of more than 2518 N/kg. Compared with existing EHA-based robots, it has a higher force-to-weight ratio and can bear larger loads. A detailed EHA model was presented, and controllers were designed based on sliding mode control and PID methods to control the output position and force of the piston. The model’s accuracy is improved by identifying uncertain parameters such as friction and leakage coefficient. Finally, both simulations and experiments were carried out. The results verified the fast response of force control (step response within 50 ms, the force tracking control frequency about 6.7 Hz) and the developed EHA’s good potential for future large wheel-legged robots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.