Abstract
Electromagnetic brake is an efficient device that provides damping to stop the undesired motion of the manipulator. A spherical design of electromagnetic brake is presented with a simple and compact alternative for haptic application. The model exploits coulomb friction to generate fully controllable braking in 3-DOF rotational motion. For miniaturized applications, the design can provide significant torques while rejecting unwanted heat generated in the actuator. In this paper, the analytical models of magnetic force and friction moment are derived, and the brake design is optimized for maximizing the force to input power ratio. The spherical electromagnetic brake is applied for haptic interface and its performance is justified by the experimental results in the virtual reality environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Control, Automation and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.