Abstract

This paper presents a novel active roll control algorithm for vehicle hydraulic active stabilizer bar system. The mechanical structure and control scheme of hydraulic active stabilizer bar system is detailed. The anti-roll torque controller is designed with “Proportional-Integral-Differential (PID) + feedforward” algorithm to calculate the total anti-roll torque. A lateral acceleration gain and roll rate damping are added into “PID + feedforward” controller, which can improve vehicle roll dynamic response. The torque distributor is introduced based on fuzzy–PID algorithm to distribute the anti-roll torque of front and rear stabilizer bar dynamically, which can improve vehicle yaw dynamics response. The actuator controller is used for realizing the closed-loop control of the actuators displacement and generating the accurate anti-roll torque. The hardware-in-the-loop simulation platform is established based on AutoBox and active stabilizer bar actuators. The hardware-in-the-loop experiment is carried out under typical maneuvers. Experimental results show that the proposed control algorithm improves the vehicle roll and yaw dynamics response, which can enhance the vehicle roll stability, yaw stability, and ride comfort.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call