Abstract

Rubber shock absorbers are widely used to reduce vibration in aerospace load devices due to their high damping characteristics. However, due to the material nonlinearity of rubber and high temperature, the accurate numerical simulation and practical application of rubber shock absorbers face difficulties and challenges. In this paper, taking a T-type rubber shock absorber as an example, according to the correlation data obtained from the performance test of rubber materials, a constitutive model of rubber materials is established for its hyperelasticity-viscoelasticity simulation analysis. On this basis, the rubber shock absorber was used to carry out the numerical simulation and experimental verification of an Unmanned Aerial Vehicle (UAV) Light Detection And Ranging (LiDAR). The results show that when the rubber constitutive model is used for simulation analysis, the obtained acceleration response curve on the UAV LiDAR is in good agreement with the test results, which effectively confirms the accuracy of the numerical simulation, and successfully verifies that the rubber shock absorber is suitable for vibration reduction of UAV LiDAR. At the same time, this method also provides a practical and effective solution for the vibration reduction design of rubber shock absorbers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call