Abstract

The spiral groove face seal is a prime candidate for application of the liquid oxygen and liquid hydrogen turbopump. The study investigated the designs of the electro-magnetic loading device (EMLD) and friction torque testing device (FTTD), and their application in the interface experiments of face seals with spiral grooves which used water as the sealing fluid. The seal performance parameters, including face temperature, face friction torque, film pressure at the seal dam, were measured under the static balance position, and the effects of the face closing force, which varied with the axial load generated from the EMLD, on the seal performance were tested under a specific controlled mode. The result indicated that both the pressure at the seal dam and face temperature increased with the rotating speed and that small friction was obtained when the face seal was fully film-lubricated. The separation speed of the controllable seal could also be controlled, which helped seal faces lift off and met the conditions of the face noncontact status. Additionally, with the application of the EMLD and FTTD, seal operation monitoring was rendered possible and a controllable face seal with desirable performance was achieved. The findings of the current study lend great insights into engineering seal design and its applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call