Abstract

This paper studies the air flow control for preventing the starvation and/or obtaining the maximum net power of a Polymer Electrolyte Membrane (PEM) fuel cell system using time delay control (TDC). Feedforward and feedback controls are utilized simultaneously to prevent air shortage during the transient response of the fuel cell operation. The TDC algorithm design is created with a low-order dynamic model, and its superior performances are proven using a real-time control experiment. The optimal air excess ratio is calculated experimentally given the variation of the external load, and the net power increase is discussed by comparison with the results obtained from fixed air excess ratio. The Ballard 1.2 kW PEM fuel cell system is used for the experiments as a test rig, and the LabView system is used for the real-time air flow control. The superiority of the TDC performance is proven by comparison with other control algorithms such as the proportional–integral control (PIC), feedforward control, and the original manufacturer's control. The proposed control algorithm can improve PEM fuel cell system performance by preventing air shortage and/or by obtaining higher performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.