Abstract

This paper presents theoretical design, network simulation, implementation, and experimental studies of optical packet routing systems supporting variable-length packets. The optical packet switching network exploits unified contention resolution in core routers in three optical domains (wavelength, time, and space) and in edge routers by traffic shaping. The optical router controller and lookup table, implemented in a field-programmable gate array (FPGA), effectively incorporates the contention resolution scheme with pipelined arbitration of asynchronously arriving variable-length packets. In addition, real-time performance monitoring based on the strong correlation between the bit-error rates of the optical label and those of the data payload indicates its application in optical time-to-live detection for loop mitigations. Successful systems integration resulted in experimental demonstration of the all-optical packet switching system with contention resolution for variable-size packets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call