Abstract

SUMMARYThis paper describes the design and experimental validation of an omnidirectional unmanned ground vehicle built for operation on real-world, unstructured terrains. The omnidirectional capabilities of this robot give it advantages over skid-steered or Ackermann-steered vehicles in tight and confined spaces. The robot's conventional wheels allow for operation in natural, outdoor environments as compared to omnidirectional robots that use specialized wheels with small, slender rollers and parts that can easily become obstructed with debris and dirt. Additionally, the robot's active split offset caster design allows the robot to kinematically follow continuous but non-differentiable paths and heading angles regardless of its current kinematic configuration. The active split offset caster design also results in less scrubbing torque and therefore less energy consumption during steering as compared to actively steered caster designs. The focus of this paper is the robot's mechanical design as it relates to kinematic isotropy and experimental validation of the design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call