Abstract

When wide-width sowing wheat after rice stubble (WRS) in a rice-wheat rotation area, there is a problem of poor uniform of seed distribution. To solve the problem, this study designed the seed distribution plate (SDP) structure and optimized its critical structure parameters. Firstly, combined with the operating principles of the wide-width seeder and the agricultural standards for WRS, the main structural parameters affecting seed movement were determined by a theoretical analysis of seed grain dynamics and SDP structure. Secondly, the operational performance of six different structures of SDP under different structural parameters was compared using discrete element simulation technology. The structure of SDP most suitable for WRS wide-width seeding and the value ranges of key structural parameters that have a significant impact on the coefficient of the variation of seed lateral uniformity (CVLU) were determined. Finally, the pattern and mechanism of the influence of key structural parameters of SDP on the CVLU were analyzed. The optimum parameter combination was obtained and a field validation test was conducted on this. The results showed that the anti-arc ridge and arc bottom structure (S6) is more suitable for the agronomy standards of WRS wide-width seeding. The chord length of ridge, installation inclination, angle between the chord and tangent of the end of ridge line (ACT), span, and bottom curve radius are determined as the key structural parameters affecting the CVLU, and there is a lower CVLU (42.8%) when the ACT is 13°. The primary and secondary order of the influence of each factor on CVLU is the chord length of the ridge, span, installation inclination, and bottom curve radius. The corresponding parameter values after optimization are 140 mm, 40°, 75 mm and 50 mm, respectively. A field test was conducted on the SDP after optimizing parameters, and the CVLU was 30.27%, which was significantly lower than the CVLU before optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.