Abstract

A direct-injection straw deep-burial method was proposed to address the issues of insufficient depth and compaction during the process of straw deep burial. Based on the working principle of oblique cutting, an in situ soil-lifting shovel is designed for oblique cutting of soil and in situ lifting of soil, forming a deep burial space for straw. Elaborating on the working principle of the in situ soil-lifting shovel, we analyzed the stress situation of each stage during the operation process and determined the structural parameter values of the in situ soil-lifting shovel. Using the DEM simulation analysis method, the regression orthogonal simulation test is carried out with the soil-opening angle, the soil-lifting angle, and the camber angle of the in situ soil-lifting shovel as the test indicators, and the number of straws deeply buried and the operational resistance as the evaluation indicators. The regression equation and the response surface mathematical model were established to analyze the influence of the interaction of various factors on the operational performance of the in situ soil-lifting shovel. The simulation results showed that the significant order of effect on the number of straws buried deeply and the operational resistance was camber angle > soil-opening angle > soil-lifting angle. After optimization, the structural parameters were soil-opening angle of 17°, soil-lifting angle of 37°, camber angle of 30°, the corresponding number of straw buried was 228.29, and the operating resistance was 2840.45 N. The average value of operational resistance obtained from the field validation test was 3145.95 N, and the error with the simulation results was only 11%. The quantity of straw buried deeply was 90.21%. The straw deep burial experiment further indicates that the operation effect meets the agronomic requirements of straw deep burial.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.