Abstract

To address the problems of the inaccurate seeding rate and uneven seeding in the process of dense planting of winter wheat in Xinjiang, according to the physical characteristics of the wheat seeds and the agronomic requirements of the high-yield cultivation techniques for the winter wheat “well” type, a double-hole wheel-type densely planted wheat hole sower was designed and produced. Through theoretical design and research, the structural design of the overall hole seeder and its key components was completed. The findings indicated that 5–7 wheat seeds could be planted in each hole at a 9.2 mm nest depth and 610 mm3 nest volume, which was consistent with the “well”-type high-yield dense-planting cultivation technology’s need for 400,000–500,000 basic seedlings per mu. The rotation speed and the quantity of the wave guide teeth were used as test factors and the qualifying index, replay index, and missed sowing index were used as test indicators to create the two-factor, three-level central composite design center combination test. It was possible to derive the mathematical model connecting the test factors and test indexes. The regression model underwent multi-objective optimization using the Design-Expert 13 program to determine the optimal parameters: the qualifying index was 91.24%, the replay index was 6.14%, and the missed seeding index was 2.62% when the wave guide rail had four teeth and the seed drill rotated at a speed of 40 revolutions per minute. The best parameter combinations were used for a bench verification test, and the test indicated that the qualified index was 90.25%, the replay index was 4.59%, and the missed broadcast index was 5.16%. The results demonstrated that the densely planted wheat hole seeder performs well, satisfies the requirements for winter wheat dense-planting and sowing operations, and serves as a model for the densely planted wheat hole seeders that will be optimized in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.