Abstract

Aimed at addressing the problems of the existing straw choppers on combine harvesters, such as a large cutting resistance and poor cutting effect, combined with bionic engineering technology and biological characteristics, a bionic model was used to extract the characteristics of the cutting blades of locusta migratoria manilensis’s upper jaw. A 3D point cloud reconstruction and machine vision methods were used to fit the polynomial curve of the blade edge using Matlab 2016. A straw-cutting process was simulated using the discrete element method, and the cutting effect of the bionic blade was verified. Cutting experiments with rice straws were conducted using a physical property tester, and the cutting resistance of straw to bionic blades and general blades was compared. On the whole, the average cutting force of the bionic blades was lower than that of the general blades. The average cutting force of the bionic blade was 18.74~38.23% lower than that of a smooth blade and 1.63~25.23% lower than that of a serrated blade. Similarly, the maximum instantaneous cutting force of the bionic blade was reduced by 2.30~2.89% compared with the general blade, which had a significant drag reduction effect. By comparing the time–force curves of different blades’ cutting processes, it was determined that the drag-reducing effect of the bionic blade lies in shortening the straw rupture time. The larger the contact area between the blade and the straw, the more uniform the cutting morphology of the straw after cutting. Field experiment results indicate that the average power consumption of a straw chopper partially installed with bionic blades was 5.48% lower than one with smooth blades, measured using a wireless torque analysis module. In this research study, the structure of the straw chopper of an existing combine harvester was improved based on the bionic principle, which reduced resistance when cutting crop straw, thus reducing the power consumption required by the straw chopper and improving the effectiveness and stability of the blades.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.