Abstract

We describe the design and control of a four legged walking robot, 45 g in weight and 130 mm × 105 mm × 25 mm in size. Each leg consists of two piezoelectric bimorph actuators that are bonded at the free end by a flexure and an end-effector. The robot generates stick-slip locomotion when applying sawtooth shaped voltage signals. Friction between legs and a contact surface is analyzed by using the Coulomb friction model. Locomotion characteristics are measured in several experiments. The robot was driven with frequencies up to 75 Hz, and a maximum velocity of 65 mm/s was obtained at two frequencies: 45 Hz with 190 Vpp driving voltage and 60 Hz with 170 Vpp driving voltage, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.