Abstract

Intracellular pH plays a significant role in many pathological and physiological processes. A series of quinoline-pyrene probes were synthesized in one-step fashion through an oxonium-ion-triggered alkyne carboamination sequence involving C-C, C-O and C-N bond formation for intracellular pH sensing. The quinoline-pyrenes showed significant red shifts at low pH. Fluorescence lifetime decay measurements of the probes showed decreases in lifetime at pH 4. The probes showed excellent selectivity in the presence of various potential interfering agents such as amino acids and cations/anions. Furthermore, the probes were found to show completely reversible emission behaviour in the window between pH 4 and 7. A morpholine-substituted quinoline-pyrene probe efficiently stained lysosomes with high Pearson correlation coefficients (0.86) with Lysotracker Deep Red DND-99 as a reference. A co-localization study of the probe with Lysotracker DND-99 showed selective intracellular targeting and a shift in fluorescence emission due to acidic lysosomal pH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call