Abstract
This paper presents the design, implementation, and evaluation of four filters for the estimation of angle of attack (AOA) and angle of sideslip (AOS) of small unmanned aerial vehicles (UAVs). Specifically, two novel filters (a complementary filter and an extended Kalman filter) are proposed and evaluated without using direct flow angle and Global Positioning System measurements; two existing AOA/AOS filters are also implemented and evaluated. All filters are designed with minimal inputs and states to ensure the ease of implementation, simplicity of tuning, and computation efficiency. Both simulation and UAV flight test results show the performance of the proposed filters. Especially, flight test results from two different UAVs (a T-tail UAV and a flying wing UAV) show that the root mean square errors of estimated inertial AOA and AOS are less than 1.5 $^\circ$ under nominal flight conditions and around 2 $^\circ$ under aggressive maneuvers compared with direct flow angle measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Aerospace and Electronic Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.