Abstract

We investigated the effect of a non-conductive tip inserted into a capillary nozzle (inner diameter of 860 µm) on jet formation and pattern width in electrohydrodynamic jet printing. Simulated and experimental results showed that the non-conductive tip stabilized the jet, and reduced the effective nozzle diameter and the onset voltage needed for the cone-jet mode, by eliminating the backflow near the apex of the liquid cone while a tiny backflow away from the apex of the liquid cone still remained. Silver nanocolloid patterns with an average width of 18.5 µm (standard deviation: 1.5 µm) were obtained with an applied voltage of 2.7 kV, a flow rate of 3 µl min−1 and a stage velocity of 200 mm s−1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.