Abstract

We examined configuring a radio frequency identification (RFID) equipment for the best object use detection in a trauma bay. Unlike prior work on RFID, we 1) optimized the accuracy of object use detection rather than just object detection; and 2) quantitatively assessed antenna placement while addressing issues specific to tag placement likely to occur in a trauma bay. Our design started with an analysis of the environment requirements and constraints. We designed several antenna setups with different number of components (RFID tags or antennas) and their orientations. Setups were evaluated under scenarios simulating a dynamic medical setting. We used three metrics with increasing complexity and bias: read rate, received signal strength indication distribution distance, and target application performance. Our experiments showed that antennas above the regions with high object density are most suitable for detecting object use. We explored tagging strategies for challenging objects so that sufficient readout rates are obtained for computing evaluation metrics. Among the metrics, distribution distance was correlated with target application performance, and also less biased and simpler to calculate, which made it an excellent metric for context-aware applications. We present experimental results obtained in the real trauma bay to validate our findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.