Abstract

This study focuses on developing a piezoelectric-based passive damper to mitigate high- frequency brake noise. The research investigates different designs of piezoelectric transducer elements to convert mechanical energy into electrical energy using a mass sliding belt test system that simulates real disc brake noise mechanisms. Integration of these electrical elements into the existing mass-sliding belt system is investigated. Five distinct piezoelectric transducer designs (Design-1, Design-2, Design-3, Design-4 and Design-5), each with unique technical specifications, boundary conditions, and scaling, are developed to suppress high frequency noise from friction-induced vibrations. To facilitate effective selection, a scoring method is employed, identifying Design-5 with a cylindrical model as the most efficient transducer design. Evaluation criteria include energy generation, compressive strength, operating temperature, weight, ergonomic usability, cost, and safety. Analyses are performed to assess potential stress-induced damage to the piezoelectric material resulting from the selected design. This study aims to contribute a novel perspective to noise reduction techniques and successfully demonstrates the integration of a piezoelectric transducer and an RLC circuit into a functional system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.