Abstract

We study an overloaded service system with servers of types S={s1,…,sJ}, serving customers of types C={c1,…,cI} under FCFS. Customers arrive in Poisson streams, join the queue and then abandon or get served. Service is skill based, which is described by a compatibility graph G, where (i,j)∈G if server type sj is trained to serve customer type ci. The service duration depends on both server and customer type. This system is motivated by applications in areas as diverse as manufacturing, call centers, housing assignment, health care, data servers and online retailers. At this level of generality, the design in terms of staffing and cross-training decisions is a challenging problem. Based on recent results in Adan and Weiss (2012a, 2012b) [14,15] and on some asymptotic assumptions, we propose an algorithm to determine, for given data, the required levels of staffing to meet target levels of service quality and labor division. The algorithm is validated through a systematic simulation study, showing that it is remarkably robust and accurate. As such, we believe that the algorithm will prove to be useful in aiding the design and effective operation of complex systems with skill based routing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.