Abstract
We report Zn doped mesoporous TiO2 microspheres synthesized via a combined sol–gel and solvothermal method exhibiting excellent Li-ion insertion–extraction properties. The specific capacity of Zn doped mesoporous TiO2 microspheres was significantly higher than that of TiO2 nanopowder at high charge–discharge rates. The superior rate performance offered by Zn doped mesoporous TiO2 microspheres may be attributed to enhanced electronic and ionic conductivity, which was achieved by improving the donor density via Zn doping and by providing a well interconnected mesoporous network of nanoparticles for the effective diffusion of Li ions. Zn doped mesoporous TiO2 microspheres showed more than an 87% capacity retention after 100 cycles at a charge–discharge rate of 1 C, demonstrating it to be a promising approach for the development of high-performance Li ion batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.