Abstract

Present study aims to prepare and evaluate niacin microspheres. Niacin-ethyl cellulose microspheres were prepared by water-in-oil-in-oil double emulsion solvent diffusion method. Spherical, free flowing microspheres having an entrapment efficiency of 72% were obtained. The effect of polymer-drug ratio, surfactant concentration for secondary emulsion process and stirring speed of emulsification process were evaluated with respect to entrapment efficiency, in vitro drug release behavior and particle size. FT-IR and DSC analyses confirmed the absence of drug-polymer interaction. The in vitro release profile could be altered significantly by changing various processing and formulation parameters to give a controlled release of drug from the microspheres. The percentage yield was 85%, particle size range was 405 to 560 μm. The drug release was controlled for 10 h. The in vitro release profiles from optimized formulations were applied on various kinetic models. The best fit with the highest correlation coefficient was observed in Higuchi model, indicating diffusion controlled principle. The in vitro release profiles of optimized formulation was studied and compared with commercially available niacin extended release formulation.

Highlights

  • Present study aims to prepare and evaluate niacin microspheres

  • The present study was aimed at design and evaluation of microspheres of highly water soluble niacin by water-in-oil-in-oil (w/o/o) double emulsion solvent diffusion method using ethyl cellulose as the retardant material with high entrapment efficiency and prolonged release

  • C1 to C5 formulations vary in polymer to drug ratio, C2, C6 and C7 formulations vary in surfactant concentrations prepared with constant polymer to drug ratio (1:0.3) and C2 C8 and C9 formulations differ in stirring speeds of emulsifications with same formulae

Read more

Summary

Design and Evaluation of Niacin Microspheres

VIDYAVATHI MARAVAJHALA*, NIRMALA DASARI1, ASHA SEPURI AND S. The effect of polymer-drug ratio, surfactant concentration for secondary emulsion process and stirring speed of emulsification process were evaluated with respect to entrapment efficiency, in vitro drug release behavior and particle size. The present study was aimed at design and evaluation of microspheres of highly water soluble niacin by water-in-oil-in-oil (w/o/o) double emulsion solvent diffusion method using ethyl cellulose as the retardant material with high entrapment efficiency and prolonged release. Various processes and formulation parameters such as drug-polymer ratio, stirring speed and surfactant concentration were optimized to maximize the entrapment and to prolong the drug release. These microspheres were evaluated for drug content and in vitro drug release.

C2 C3 C4 C5
MATERIALS AND METHODS
RESULTS AND DISCUSSION
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call