Abstract

Herein, we report the properties of nanostructured lipid carriers (NLCs) prepared with a gradient concentration of Bergenin (BGN) isolated from Pentaclethra macrophylla stem bark powder. A gradient concentration of BGN (BGN 0, 50, 100, 150, and 200 mg) was prepared in a 5 % lipid matrix consisting of Transcutol HP (75 %), Phospholipon 90H (15 %), and Gelucire 43/01 (10 %) to which a surfactant aqueous phase consisting of Tween 80, sorbitol, and sorbic acid was dissolved. The NLCs were evaluated by size, polydispersity index (PDI), zeta potential, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), encapsulation efficiency, and in vitro drug release. The result shows polydispersed nanoparticles with high drug encapsulation (94.26–99.50 %). The nanoparticles were mostly spherical, but those from the 50 mg BGN batch were more cuboidal than spherical. The drug release was highest from the latter to the tune of 40 % compared to the pure BGN solution, which released about 15 % BGN. The anti-inflammatory activity of the BGN-NLC and total plant extract was studied on lipopolysaccharide (LPS)-inflamed macrophages. The cell study showed that BGN and plant extract had low cytotoxicity on macrophages and exhibited a dose-dependent anti-inflammatory effect on the LPS-induced inflammatory process in macrophages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call