Abstract

Network virtualisation is considerably gaining attention as a solution to ossification of the Internet. However, the success of network virtualisation will depend in part on how efficiently the virtual networks utilise substrate network resources. In this paper, we propose a machine learning-based approach to virtual network resource management. We propose to model the substrate network as a decentralised system and introduce a learning algorithm in each substrate node and substrate link, providing self-organization capabilities. We propose a multiagent learning algorithm that carries out the substrate network resource management in a coordinated and decentralised way. The task of these agents is to use evaluative feedback to learn an optimal policy so as to dynamically allocate network resources to virtual nodes and links. The agents ensure that while the virtual networks have the resources they need at any given time, only the required resources are reserved for this purpose. Simulations show that our dynamic approach significantly improves the virtual network acceptance ratio and the maximum number of accepted virtual network requests at any time while ensuring that virtual network quality of service requirements such as packet drop rate and virtual link delay are not affected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.