Abstract

Composite bio-based hydrogels have been obtaining a significant attention in recent years as one of the most promising drug delivery systems. In the present study, the preparation of composite chitosan-starch hydrogel using maleic acid as a cross-linker was optimized with the help of response surface methodology. The synthesized hydrogel was fluorescent owing to clustering of large number of functional groups. Different analytical techniques, including XRD, FTIR, SEM, XPS, fluorescence and BET were utilized to characterize the prepared hydrogel. XRD analysis confirmed the formation of non-crystalline hydrogel with random arrangement of macromolecular chains. The composite hydrogel exhibited good swelling percentage with pH sensitivity, hemocompatibility and degradability. BET analysis confirmed that the variation in concentration of crosslinker significantly influences the pore volume of the hydrogel. The synthesized composite chitosan-starch hydrogel was utilized as a prospective candidate for controlling drug release. Cefixime as a model drug was loaded onto the synthesized hydrogel utilizing the swelling diffusion method. SEM micrographs showed uniform distribution of drug molecules in the drug loaded hydrogel. In vitro drug release experiments indicated the swelling dependent drug release behaviour of chitosan-starch hydrogel with higher drug release at pH 7.4 (93.08 %) compared to pH 1.2 (67.85 %). The composite chitosan-starch hydrogel was able to prolong and control the drug release up to 12 h. The drug release from the hydrogel followed Korsmeyer-Peppas and Makoid-Banakar model with Fickian diffusion mechanism. Further, the composite hydrogel displayed excitation dependent fluorescence emission with most intense blue emission band at 425 nm with an excitation wavelength of 350 nm. The inclusion of cefixime drug in the hydrogel matrix significantly reduced the fluorescence intensity; the decrease was linearly correlated to the concentration of the drug. Moreover, the fluorescence emission the chitosan-starch hydrogel was found to be dependent upon pH. The synthesized hydrogel is expected to be a potential candidate for controlled drug release as well as for fluorescent sensing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.