Abstract

[EN] In recent years, advances in wireless technologies and improved sensing and computational capabilities have led to a gradual transition towards Intelligent Transportation Systems (ITS) and related applications. These applications aim at improving road safety, provide smart navigation, and eco-friendly driving. Vehicular Ad hoc Networks (VANETs) provide a communication structure for ITS by equipping cars with advanced sensors and communication devices that enable a direct exchange of information between vehicles. Different types of ITS applications rely on two types of messages: periodic beacons and event-driven messages. Beacons include information such as geographical location, speed, and acceleration, and they are only disseminated to a close neighborhood. Differently from beacons, event-driven messages are only generated when a critical event of general interest occurs, and it is spread within a specific target area for the duration of the event. The reliability of information exchange is one of the main issues for vehicularcommunications since the safety of people on the road is directly related to the effectiveness of these transmissions. A Medium Access Control (MAC) protocol must guarantee reliable beacon broadcasting within deadline bounds to all vehicles in the neighbourhood, thereby providing them timely notifications about unsafe driving conditions or other hazardous events. Moreover, infotainment and comfort applications require reliable unicast transmissions that must be taken into account. However, high node mobility, highly dynamic topology, and lack of a central control unit, are issues that make the design of a reliable MAC protocol for vehicular environments a very difficult and challenging task, especially when efficient broadcasting strategies are required. The IEEE 802.11p MAC protocol, an approved amendment to the IEEE 802.11 standard, is a random access protocol that is unable to provide guaranteed delay bounds with sufficient reliability in vehicular scenarios, especially under high channel usage. This problem is particularly serious when implementing (semi-) automated driving applications such as platooning, where inter-vehicle spacing is drastically reduced, and the control loop that manages and maintains the platoon requires frequent, timely and reliable exchange of status information (beacons). In this thesis novel protocols compatible with the IEEE 802.11 and 802.11p standards are proposed in order to optimally adjust the contention window size for unicast applications in Mobile Ad hoc Networks (MANETs) and VANETs. Experimental tests comparing our proposals to existing solutions show that the former are able to improve the packet delivery ratio and the average end-to-end delay for unicast applications. Concerning efficient message diffusion (broadcast) in VANET environments, we proposed token-based MAC solutions to improve the performance achieved by existing 802.11p driving safety applications in different vehicular environments, including highway, urban, and platooning…

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call