Abstract

The principles of bioorthogonal click chemistry and metabolic glycoengineering were applied to produce targeted anti-cancer drug delivery via fattigation-platform-based gelatin-oleic nanoparticles. A sialic acid precursor (Ac4ManNAz) was introduced to the cell surface. Gelatin and oleic acid were conjugated by 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide (EDC/NHS) chemistry with the subsequent covalent attachment of dibenzocyclooctyne (DBCO) in a click reaction on the cell surface. The physicochemical properties, drug release, in vitro cytotoxicity, and cellular uptake of DBCO-conjugated gelatin oleic nanoparticles (GON-DBCO; particle size, ∼240 nm; zeta potential, 6 mV) were evaluated. Doxorubicin (DOX) was used as a model drug and compared with the reference product, Caelyx®. A549 and MCF-7 cell lines were used for the in vitro studies. GON-DBCO showed high DOX loading and encapsulation efficiencies. In A549 cells, the IC50 value for GON-DBCO-DOX (1.29 µg/ml) was six times lower than that of Caelyx® (10.54 µg/ml); in MCF-7 cells, the IC50 values were 1.78 µg/ml and 2.84 µg/ml, respectively. Confocal microscopy confirmed the click reaction between GON-DBCO and Ac4ManNAz on the cell surface. Flow cytometry data revealed that the intracellular uptake of GON-DBCO-DOX was approximately two times greater than that of GON-DOX and Caelyx®. Thus, the newly designed GON-DBCO-DOX provided a safe and efficient drug delivery system to actively target the anticancer agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.