Abstract

Edwardsiella tarda is associated with edwardsiellosis in cultured fish, resulting in heavy losses in aquaculture. So far, different types of vaccine have been attempted against E. tarda. In this study, an optimized eukaryotic expression plasmid was developed and an optimized DNA vaccine co-encoding antigenic and adjuvant peptide using a bicistronic expression system was designed. As a result, a modified plasmid harbored cytomegalovirus (CMV) promoter attached with R region of long terminal repeat from human T-cell leukemia virus type 1 (CMV/R) and woodchuck hepatitis virus post-transcriptional response element (WPRE) component showed an increased antigenic gene expression compared with unmodified plasmid. Moreover, the designed system based on bicistronic system exhibited a stronger ability to express antigenic gene and the RPS achieved 87.3% compared with plasmid encoding antigentic gene. Finally, immunological analysis showed that the DNA vaccine induced both innate and adaptive immune responses. These results suggest that co-encoding antigenic and adjuvant proteins might be an efficient strategy to develop DNA vaccines in aquaculture in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.