Abstract

Fair scheduling algorithms have been proposed to tackle the problem of bursty and location-dependent errors in wireless packet networks. Most of those algorithms ensure the fairness property and guarantee the QoS of all sessions in a large-scale cellular network such as GSM or GPRS. In this paper, we propose the Weighted-Sacrificing Fair Queueing (WSFQ) scheduling algorithm for small-area and device-limited wireless networks. WSFQ slows down the growth of queue length in limited-buffer devices, still maintains the properties of fairness, and guarantees the throughputs of the system. Moreover, WSFQ can easily adapt itself to various kinds of traffic load. We also implement a packet-based scheduling algorithm, the Packetized Weighted Sacrificing Fair Queueing (PWSFQ), to approach the WSFQ. WSFQ and PWSFQ are evaluated by comparing with other algorithms by mathematical analysis and simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call