Abstract
In this paper, we propose an energy-efficient reconfigurable platform for in-memory processing based on novel four-terminal spin Hall effect-driven domain wall motion devices that could be employed as both nonvolatile memory cell and in-memory logic unit. The proposed designs lead to unity of memory and logic. The device to system level simulation results show that, with 28% area increase in memory structure, the proposed in-memory processing platform achieves a write energy ~15.6 fJ/bit with 79% reduction compared to that of SOT-MRAM counterpart while keeping the identical 1 ns writing speed. In addition, the proposed in-memory logic scheme improves the operating energy by 61.3%, as compared with the recent nonvolatile in-memory logic designs. An extensive reliability analysis is also performed over the proposed circuits. We employ advanced encryption standard (AES) algorithm as a case study to elucidate the efficiency of the proposed platform at application level. Simulation results exhibit that the proposed platform can show up to 75.7% and 30.4% lower energy consumption compared to CMOS-ASIC and recent pipelined domain wall (DW) AES implementations, respectively. In addition, the AES energy-delay product can show 15.1% and 6.1% improvements compared to the DW-AES and CMOS-ASIC implementations, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.