Abstract

This paper presents the design and implementation of a large-step-down soft-switched dc-dc converter based on the active bridge technique which overcomes some of the limitations of the conventional Dual Active Bridge (DAB) converter. The topology comprises a double stacked-bridge inverter coupled to a reconfigurable rectifier through a special three-winding leakage transformer. This particular combination of stages enable the converter to run in an additional low-power mode that greatly increases light-load efficiency by reducing core loss and extending the zero-voltage switching (ZVS) range. The converter is implemented with a single compact magnetic component, providing power combining, voltage transformation, isolation, and energy transfer inductance. A 175 kHz, 300 W, 380 V to 12 V GaN-based prototype converter achieves 95.9% efficiency at full load, a peak efficiency of 97.0%, an efficiency above 92.7% down to 10% load and an efficiency above 79.8% down to 3.3% load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.