Abstract

Because instrumented spatial linkages (ISLs) have been commonly used in measuring joint rotations and must be calibrated before using the device in confidence, a calibration device design and associated method for quantifying calibration device error would be useful. The objectives of the work reported by this paper were to (1) design an ISL calibration device and demonstrate the design for a specific application, (2) describe a new method for calibrating the device that minimizes measurement error, and (3) quantify measurement error of the device using the new method. Relative translations and orientations of the device were calculated via a series of transformation matrices containing inherent fixed and variable parameters. These translations and orientations were verified with a coordinate measurement machine, which served as a gold standard. Inherent fixed parameters of the device were optimized to minimize measurement error. After parameter optimization, accuracy was determined. The root mean squared error (RMSE) was 0.175 deg for orientation and 0.587 mm for position. All RMSE values were less than 0.8% of their respective full-scale ranges. These errors are comparable to published measurement errors of ISLs for positions and lower by at least a factor of 2 for orientations. These errors are in spite of the many steps taken in design and manufacturing to achieve high accuracy. Because it is challenging to achieve the accuracy required for a custom calibration device to serve as a viable gold standard, it is important to verify that a calibration device provides sufficient precision to calibrate an ISL.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.