Abstract
For the development of the next generation of multi megawatt wind turbines, advanced control concepts are one of the major tasks. Reduction of fatigue and extreme loading could help to improve the overall design process and make plants more cost effective. This work deals with the application of the promising methodology of feedforward control using nacelle-based lidar sensor measurements on a 10 MW wind turbine concept. After lidar data processing has been described, the feedforward controller is designed such that disturbances from the changing wind speed to the generator speed are compensated by adding an update to the collective pitch rate signal of the normal feedback controller. The evaluation of the feedforward controller is done in two steps: Firstly, simulations using perfect lidar data measurements are applied to check the robustness of the controller against model uncertainties. After that, simulations with realistic lidar measurements are investigated. To improve control performance, the scanning configuration of the used lidar system is optimized. Over all it can be shown that lidar-assisted control leads to significant load reductions, especially in the full load region of the 10 MW turbine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.