Abstract
A Laval-type supersonic gas atomizer was designed for low-pressure gas atomization of molten metals. The principal design objectives were to produce small-particle uniform powders at lower operating pressures by improving the gas inlet and outlet structures and optimizing structural parameters. A computational fluid flow model was developed to study the flow field characteristics of the designed atomizer. Simulation results show that the maximum gas velocity in the atomization zone can reach 440 m·s−1; this value is independent of the atomization gas pressure P0 when P0 > 0.7 MPa. When P0 = 1.1 MPa, the aspiration pressure at the tip of the delivery tube reaches a minimum, indicating that the atomizer can attain the best atomization efficiency at a relatively low atomization pressure. In addition, atomization experiments with pure tin at P0 = 1.0 MPa and with 7055Al alloy at P0 = 0.8 and 0.4 MPa were conducted to evaluate the atomization capability of the designed atomizer. Nearly spherical powders were obtained with the mass median diameters of 28.6, 43.4, and 63.5 μm, respectively. Compared with commonly used atomizers, the designed Laval-type atomizer has a better low-pressure gas atomization capability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Minerals, Metallurgy, and Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.