Abstract

A high-flow (10 L/min) nanoparticle respiratory deposition (NRD) sampler was designed and evaluated to achieve reduced limits of quantification (LOQs) for metal nanoparticles. The high-flow NRD consists of an inlet, impactor stage, diffusion stage, and a final filter. An impactor stage with 12 nozzles was designed from theory to achieve a cut-off diameter of 300 nm at 50% particle collection efficiency (d50). Various depths of 37-mm-diameter polyurethane foam cylinders were tested for the diffusion stage to obtain a collection efficiency curve similar to the deposition of nanoparticles in the human respiratory tract, known as the nanoparticulate matter (NPM) criterion. The objective for the final filter was a collection efficiency of near 100% with minimal pressure drop. The collection efficiencies by size and pressure drops were measured for all NRD sampler components. The final design of the impactor stage nozzle achieved a d50 of 305 nm. The collection efficiency for the diffusion stage with a depth of 7 cm when adjusted for presence of the impactor was the closest to the NPM curve with a R2 value of 0.96 and d50 of 43 nm. Chemical analysis of the metal content for foam affirmed that the high-flow NRD sampler required less sampling time to meet metal LOQs than the 2.5 L/min NRD sampler. The final filter with a modified support pad had a collection efficiency near 100%. The overall pressure drop of the sampler of 8.5 kPa (34 in. H2O) could not be handled by commercial personal sampling pumps. Hence the high-flow NRD sampler can be used as an area sampler or without the final filter for collection of nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.